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The effect of fluctuations in filtration rates on the coefficients of internal 
heat and mass transfer and of convective dispersion in randomly inhomogeneous 
porous media is investigated on the basis of the correlation theory of station- 
ary random functions. 

As is well known [i-5], inhomogeneities in the filtration properties of a porous medium 
(permeability, porosity) lead to the appearance of fluctuations in filtration rates. This 
effect, called in [3] filtration pseudoturbulence, can lead to various dispersion effects 
and can have a substantial, sometimes even dominant effect on the various transport processes 
in filtration flows. A quite large number of studies is known (see [6-11], as well as the 
review and discussion in [5]), devoted to accounting for these inhomogeneities and investi- 
gating the corresponding random fields of velocity, pressure, impurity concentration, and 
others. 

The analysis below of the effect of medium inhomogeneities on heat and mass transfer 
processes was carried out on the basis of the results of [5, 7], where the correlation 
theory of stationary random functions [12] is the mathematical tool used. 

Filtration in a Granular Layer. The correlation properties of random velocity and 
pressure fields were investigated in [7] for filtration flow in a densely packed granular 
layer. With the purpose of removing several inaccuracies in [7], we consider in detail seve- 
ral elements of the theory developed in [7]. 

The local filtration velocity, fluid pressure, and porosity can be represented in the 
form 

V = v + v ' ,  P = p + p ' ,  M = m + m ' ,  (1 )  

where  v ,  p ,  and m a r e  t h e  mean v e l o c i t y ,  p r e s s u r e ,  and p o r o s i t y ,  and t h e  p r i m e d  q u a n t i t i e s  
a r e t h e  c o r r e s p o n d i n g  f l u c t u a t i o n s .  

The following equations are valid under conditions of validity of the two-term filtra- 
tion law for an incompressible fluid 

- - V  P=(K~+ K2V) V, V V = 0 .  (2 )  

The coefficients K 1 and K 2 are assumed to be known functions of the porosity m. Substitu- 
ting (i) into (2) and including only linear terms in the fluctuations leads to stochastic 
equations, describing fluctuating motion: 

- -  vp' = (K~ + K~v) v' + K~ (v~') v + (K~ + K~ v) vm', 

v (3)  
VV' = O, Ki = Ki (m), K~ = dKt (m), Vo = -- �9 

dm v 

The random fields m', p', w' 
with random measures dZm, dZp, dZv. Taking into account relations (3), we then reach 
linear equations relating these random measures: 

= +i 
- -  iwdZp (K~ + K~v) az~ + K~ (vodZ~) v (K~ + K~ v) v ~Z~, waZo = O. 

The solutions of (4) are: 

d Z p  = i~ (1- -?) (K~ + K2v) w~ w2__~w~ vdZm, 

are represented in the form of Fourier-Stieltjes integrals 

(4) 
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Fig. i .  Xi (solid curve) and Xr (dashed) as functions of 
<Re> for filtration in a granular leyer (a) and filtra- 
tion in an inhomogeneous porous layer of arbitrary struc- 
ture (b). Curves 1-3 correspond to the parameter values 
Re, = i0, i, 0.I. 

WW 1 - -  Vo w2 dZv=~(1--?) wf__yw] vdZm, 

where the  fo l l owing  parameters  were i n t roduced  

K~ + K~ v K~o 

= KI+K~v ' ? = K I + f K ~  v' '  
and the  x - a x i s  has been s e l e c t e d  along the  d i r e c t i o n  of  the  mean v e l o c i t y  v. 
coefficients K~ and K 2 the expressions following from the semiempirical Ergun equations 
for the hydraulic resistance of a granular layer, we find 

(5 )  

(6) 

Using for the 
[131 

I 2 - - m  + 0,0233 ( Re > 0,0117 < Re) ~ =  , ? =  , 

m 1 - - m + 0 ; 0 1 1 7 < R e )  1 - - m + 0 . 0 1 1 7 < R e >  
(7 )  

( R e )  = 2av/v. 

In Eqs. ( 5 ) - (7 )  we have removed i n a c c u r a c i e s  committed in w r i t i n g  the  analogous r e l a t i o n s  
in [7]. 

The relation found between the random measures dZv and dZ m makes it possible to calculate 
in particular, the mean-square components of the velocity fluctuation <vi '2> for known spec- 
tral properties of m'. Such calculations were carried out in [7], where the following result 
was obtained 

t2 ,2 ~2 
<v~ > =X~v~Am, <v~ > = <  v3 >=X~vfAm, (8) 

X~ = 0,30 i~ (1 - -  ~ l  ~ ( 4  - -  2J~ + A), 

1 t~d t  
X~=0,15[a(1--y)12(J2--J~),  J ~ =  ; (1--y2t2)~ 

--1 

Here Am i s  the  a b s o l u t e  va lue  of  the  d e v i a t i o n  between the  mean l a y e r  p o r o s i t y  and some v a l -  
ue m,, fo r  which the  p o r o s i t y  inhomogene i t i e s  presumably van i sh  [7] .  

The dependences of  X~ and X r on <Re> are  shown in Fig .  l a  f o r  m = 0 .4 .  

Filtration in a Porous Medium of Arbitrary Structure. The effect of permeability fluc- 
tuations on filtration and impurity transport in a porous medium under conditions of validity 
of the Darcy law was studied in [5]. For a number of practical calculations, however, it is neces- 
sary to know the dependence of the effective heat and mass transfer coefficients on the Reynolds num- 
ber, including its values when Darcy's law is definitely not satisfied due to the occurrence of 
inertial effects. To generalize the results of [5] to the large Re region we consider fil- 
tration in a medium with random inhomogeneities, replacing Darcy's law by the two-term Du- 
puit-Forkhgeimer filtration law [14]. The local filtration and continuity equations are 
also in this case of the form (2), where 

K~ = WK, K~ = ~p/]/K. (9) 
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Fig. 2. The mean effective Sherwood number Sh' as a function 
of <Re> for various n (digits at curves): a) for filtration in 
a granular layer at m = 0.4, Am = 0.05; b) for filtration in 
an inhomogeneous porous medium with Re, = 0.i, Ak = 0.i, g = 0; 
c) the same in the case of linear dependence of porosity on 
permeability, i.e., g = m/k. 

A set of various expressions, obtained on the basis Of handling experimental data (see, 
for example, [i, 4, 15-18]), has been suggested for the dimensionless coefficient ~ in (9). 
For simplicity we assume here that 8 is an empirical quantity, being constant for a given 
porous medium. 

We represent the local velocity, pressure, permeability, and porosity in the form (i). 
Carrying out calculations similar to (2)-(6), we obtain the same connection between the ran- 
dom measures dZv, dZp, and dZ k as in (5), provided dZ m is replaced by dZ k. Taking into ac- 
count (9), the coefflcients K I' and K 2' in (6) are 

2 

The l a s t  r e l a t i o n s  d e t e r m i n e  t h e  p a r a m e t e r s  ~ and ~ in  ( 6 ) :  

1 1-F0.5B < Re > B < R e >  
~ =  , T = , 

k I + B < R e >  l + 2 B <  Re> 
(i0) 

~kI12 v 
B = 13m 8 / 2 ,  < R e  > = - -  

The equation for the Re number suggested by M. D. Millionshchikov was used in (i0). Its 
effectiveness was established experimentally for a large class of porous media [i, 15]. 

Based on the dependence betweenthe random measures dZ v and kZ k, by carrying out calcu- 
lations similar to those in [5] we find expressions for the mean-square components of the 
velocity fluctuations 

w'--~w? mh,h(w)dw = 0 ,50[~t l - -  ~)vp(Ja--2J2+J,)k~, (11) 
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,2  ,S 

<v~ > =  (va  > = 0 , 2 5 [ ~ ( 1 - - ? ) v } 2 ( J 2 - - J 0 k ~ ,  (12)  

where  Jm(~) i s  d e f i n e d  in  ( 8 ) ,  Ck,k(W) i s  t h e  s p e c t r a l  d e n s i t y  o f  t h e  random p e r m e a b i l i t y  
f i e l d  [ 5 ] ,  and k 0 has  t h e  meaning o f  m e a n - s q u a r e  p e r m e a b i l i t y  f l u c t u a t i o n s  

k~ = 4n i ~k,k (W) W ~ dw. 
0 

In  p a r t i c u l a r ,  i n  s a t i s f y i n g  D a r c y ' s  law ~ = 0,  b u t  a = - 1 / k .  In  t h i s  e a s e  we o b t a i n  
from (ii), (12) 

. ,  8 g . ,  . ,  __1 
<v, ) = - F g - v  2 k ~  <v2 > = < v s  > =  .~.k 

' 15 " k 2 " 

The l a t t e r  r e l a t i o n s  c o i n c i d e  w i t h  t h e  e q u a t i o n s  o b t a i n e d  in  [2]  and in  [5] f o r  t h e  d i s p e r -  
s i o n  o f  t h e  f i l t r a t i o n  v e l o c i t y  components  u n d e r  c o n d i t i o n s  o f  D a r c y ' s  law.  

To i n v e s t i g a t e  t h e  n a t u r e  o f  d e p e n d e n c e  o f  t h e  m e a n - s q u a r e  components  o f  t h e  v e l o c i t y  
f l u c t u a t i o n s  on <Re> we u s e  t h e  e x p r e s s i o n  f o r  ~, s e l e c t e d  f rom t h e  A. I .  C h a r n y i  e q u a t i o n  
[17] for the two-term filtration law. For the parameter B in (I0) we have B = 0.064/Re,. 
The Re, value in [17] was selected ~ 0.I from comparison results with experimental data on 
filtration in granular media. 

Relations (Ii), (12) are conveniently represented in the form (8) 

~2 

(v~ > = x ~ v ] ~ k ,  <v~ > = < v ~  > = X r  ~v2Ak, 

X = 0.50 [k~z (1 - -  "/)l 2 (Jo - -  2J2+J~), 

x~ = 0.25 [k~ (1 - -  ~)]2 (J2-- gO. 

(13)  

Here Ak = k02/k 2 has the meaning of mean-square relative permeability fluctuations. 

The shape of the functions Xs Xr(<Re>) is shown in Fig. lb. As follows from the 
plots, the shape of the plots depends strongly on the parameter Re,, which may vary strongly 
for porous media of varying structure. 

Internal Heat and Mass Transfer. Numerous empirical equations for the dependence of 
Sherwood Sh and Nusselt Nu numbers, characterizing the intensity of heat and mass transfer 
processes to granular layers, on the Re number were obtained in a number of studies (see 
[4, i0, 19-21]) on the basis of analyzing experimental data on heat and mass transfer to 
dispersed particles of a granular layer. These equations, having in most cases the shape of 
power-law dependences, describe very well the results of various experiments, but display 
poor internal consistency. 

One of the reasons for the inconsistency of empirical dependences can be related to the 
fact that in most experiments there exists an uncontrolled factor, related to the inhomo- 
geneities of the porous medium, leading to generation of filtration of pseudoturbulent flow 
[3] and affecting the experimentally determined mean coefficients of heat or mass transfer. 

To investigate this effect for filtration flow in a granular layer we assume that the 
approximation Sh = C Re n is valid in some Re interval. Assuming then that the velocity 
fluctuations are relatively slow, we obtain 

~ P  r 

R e " =  V", V " = [ ( v + v ~ )  2 + v 2 + v 3 ] " / 2 = ~  1 + - ~ \  v v ~ ] + i ~,2 In~2 
~3 V ~ J 

; v'~=vl +v2  +v ' / .  

Hence 

n <v, > n <v2 >+ <v~ > 
( V n ) = v "  1 + ~ ( n - - 1 )  v~ - b - ~  v~ . 

Tak ing  now i n t o  a c c o u n t  Eq. ( 8 ) ,  we f i n d  

(14) 
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Fig. 3. The quantities Pe~ and Pe r for a 
granular layer (curves i and 2, respec- 
tively) as functions of the Reynolds number. 
The curves are calculation results by Eqs. 
(23) at $s = Sr = 0.003, ~ = 0.45, Am = 
0.0015, C = I; the dark and light points 
correspond to the radial and axial disper- 
sion coefficients, determined experimen- 
tally [24]. 

( Ren ) = ( Ren ) [1--  ( 2 (1--n)X~--nX~ ) Am ], 

making it possible to write down a relation for the effective mean Sherwood number: 

(Sh) = S h , = l _ [ 2 ( l _ n ) X ~ _ n X ~ I A m .  (15) 
Sh((Re))  

The dependences (15) on <Re> are shown in Fig. 2a for various n. Analysis of the figure 
shows that the effect of porosity fluctuations on the effective mass-exchange coefficient 
is manifested most strongly for small Reynolds numbers. This effect is attenuated for in- 
creasing <Re>, and practically vanishes for <Re> ~ i000. The deviation of the effective 
Sherwood number from the same number, calculated for the mean value of the Reynolds number, 
can reach 15% (for Am = 0.05). The nature of the dependence of Sh' on <Re> is largely de- 
termined by the exponent n in the power-law equation for the Sherwood number. As is seen 
from the figure, for various n the packing inhomogeneity of the granular layer can lead, 
in principle, to both a decrease (n = 0.4, 0.6) or an increase (n = 0.8, 1.0, 1.2) of the 
heat or mass transfer coefficient. This conclusion is interesting, since earlier on it has 
been usually assumed that a nonuniformity in the granular layer can only lead to deteriora- 
tion of heat or mass transfer in this case [i0]. 

To investigate heat and mass transfer processes during filtration in a porous medium of 
arbitrary structure with random inhomogeneities we also use a power-law dependence for the 
Sherwood number. Applying the Newton binomial equation, and assuming that the velocity, per- 
meability, and porosity fluctuations are small, we have 

iSh=CRe"=C K1/2V n=C k~/2v n 1+ 1 ~ .  1+ + 
vM3/2 ~ma/2 m "--Y- - 7  / J " 

We assume that the porosity M and the permeability K are related deterministically (M = 
f(K)). In that case m' = gk', where g = df/dKIK= k. Averaging the latter expression for 
the Sherwood number, we obtain 

Sh=C(  Re)" 1+ 4 km -4  - -1  + 
t~ 

+ ---f- - -1  7 ( k " ) "-k T ( n -- vs + (16) 

+-2-n <v2 )+(v 2 va ) +._~_ __3:;g:,, ( m v j  k'.vl ) . 
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We note that <k'2> = k02 
(12), we find 

Carrying out calculations similar to those used in deriving (ii), 

1 X ~ l d x .  (17) < = o,sk O- ) .[ 
k I 

Expressions (15), (17) make it possible to write Eq. (16) in the following form: 

{[ <Sh> l-t- n an 2 gk 
Sh'--  Sh(<Re>) ~ - - 1  4 m ac 

+ - - 4 -  1 ] 1) + + 1 -  3 Ak. 

(18) 

Figure 2b shows the dependence of Sh' on <Re> for various values of n and of the param- 
eter Re, for situations in which the medium porosity does not undergo fluctuations (i.e., 
is constant). Figure 2c shows the same dependences for the case of linear deterministic 
dependence of the porosity on permeability (g = m/k). It is noted that the curve shapes de- 
pend strongly on both n and on the parameters Re, and gk/m, which can acquire values differ- 
ing by orders of magnitude. A large effect on the shape of the dependence Sh'(<Re>) is, ob- 
viously, also due to the choice of expressions for the Re number (12) in the empirical power- 
law equation for the Sherwood number. 

Convective Dispersion. During flow in porous and granular media, along with molecular 
diffusion and convective transport there exists one more impurity transport mechanism, 
called convective dispersion. This effect is generated by the displacements of neighboring 
fluid jets during motion in the intersecting pore space. The presence of a distinct flow 
direction along the instrument axis, along which there occurs filtration transport, also 
leads to the fact that the total coefficient of impurity dispersion D acquires a tensor char- 
acter, where the axial component of the dispersion coefficient Ds exceeds substantially the 
radial component D r. Besides, nonmonotonic dependences of the Peclet number Pe = 2av/D on 
the Reynolds number were observed experimentally [22], for which the appearance of local 
maxima on the curve Pe(Re) is characteristic. In a number of studies (see, for example, 
[23, 24]) the authors succeeded in describing the experimentally observed effects, but in 
their constructions they did not succeed in avoiding the use of phenomenological hypotheses 
and dependences. It is shown below that all observed effects can be explained as a result of 
inhomogeneities of the porous medium. 

For filtration transport of neutral impurities in a homogeneous porous medium the effec- 
tive dispersion coefficients Ds and D r can be represented in the following form (if the im- 
purity concentration is defined for unit volume of the porous medium) [7, ii]: 

Dz = ~Dm + 2a~zv, Dr = ~Dm -1- 2a~rv, (19) 

where ~ is the product of the twisting coefficient by the porosity, D m is the molecular im- 
purity diffusion coefficient in the fluid, and $ is an empirical coefficient. 

A quite rigorous analysis of the effect of random inhomogeneities on impurity disper- 
sion in a porous medium can be carried out on the basis of averaging the equations of convec- 
tive diffusion, as was done in [5] for filtration under conditions of the Darcy law. Due to 
the unwieldiness of this analysis we restrict ourselves to a simplified study, based on the 
results obtained in [7] for filtration in a densely packed granular layer. 

We express the axial Ds and radial D r ' dispersion coefficients due to inhomogeneities 
of the porous medium in the form 

,2 ,t 

D ; = ( v l  )T ,  D~= <v2 >r, (20) 

where T is the mean lifetime of fluctuations in the impurity concentration within the limits 
of the sample. This time can be represented, in turn, in the form 

T = 2i~/(Dz + Dr), (21) 

where L is the spatial scalar scale of local fluid motions. We put L 2 = 4a2C, where C is a 
numerical dimensionless parameter. For flow in the granular layer C ~ i, since the charac- 
teristic inhomogeneity scale of a granular layer is comparable with the layer particle sizes. 
For filtration flows in porous media of a different structure (cemented rock) this param- 
eter can acquire large values, since for a substantial class of porous media the inhomogen- 
city scale exceeds strongly the size of an isolated pore. 
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From (19)-(21) we have 

8Ca ~< ol > 8Ca s<o2 > (22)  
< D t > = D t q -  D~-a t-Dr ' < D r > = D r - ~  Dtq-D,  

Introducing the Schmidt Sc : v/D m and Peclet Pe~ = 2av/<Ds Pe r = 2av/<Dr> (Re = 2av/v) 
numbers, we rewrite relation (22) in dimensionless form 

,S  

_ 2C < vl > Iv' ~ +~,+ 
Pez Sc Re 2al~ -}- 131 Jr [3r 

SeRe : 
i 1  

2C < v2 > Iv" -J_~ = ~___t_+~r+ 
Per Se Re 

SeRe 

(23) 

These dependences (as functions of the Reynolds number) are presented in Fig. 3 for filtra- 
tion in a granular layer, when the quantities <vi'2>/v 2 are calculated by Eqs. (8). Also 
provided here are experimental data [24] for varying radial and axial dispersion. Similar 
dependences for impurity filtration transport in an inhomogeneous porous medium are easily 
obtained by using values for the mean-square components of velocity fluctuations from rela- 
tions (ii), (12). 

NOTATION 

a, particle radius of a granular layer; B, parameter in (i0); C, a proportionality cons- 
tant; D, dispersion coefficient; Dm, molecular diffusion coefficient; dZ m, dZ k, dZp, dZ v, 
random measures; Jn, auxiliary function in (8); K, M, P, u and k, m, p, v are, respectively, 
the local and mean permeability, porosity, pressure, and velocity; K I and K 2, coefficients 
in (2); L, scale of local fluid motion; n, parameter in (15); Pc, Peclet number; Re, Reynolds 
number; Re,, a parameter characterizing the filtration properties of a porous medium; Sc, 
Schmidt number; Sh, Sherwood number; Sh', mean effective Sherwood number; T, some characte- 
ristic time in (20); v0, unit vector defined in (3); w, wave vector; Xs X r, Xs k, functions 
of Re defined in (8), (13), (17), ~, y, are coefficients in (5); 8, coefficient in (9); ~, 
viscosity; ~, kinematic viscosity; p, density; Ck,k, spectral density; ~, porosity-twisting 
product; and < >, averaging operator. Subscripts s and r are the radial and axial 
components of a quantity, and ' denotes random fields with vanishing means. 
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EQUATIONS OF HYDRODYNAMICS FOR POROUS MEDIA WITH A 

VOID STRUCTURE POSSESSING FRACTAL GEOMETRY 

Ao V~ Mal'shakov UDC 532.546 

We obtain the equations of filtration for the case when a void space is a fractal 
embedded in a continuous medium. We consider a model of capillary permeation of 
porous materials with percolation properties~ 

Introduction~ In recent years the theory of fractals, i~ objects with a fractional 
spatial dimensionality [1-4], has been widely used to describe the structure of disordered 
media and processes in disordered media. Examples of disordered materials are porous bod- 
ies such as rocks~ The void space, the skeleton, or the surface of the body can be a 
fractal [5, 6]o 

It was shown in [7, 8] that certain features of the behavior of processes in porous 
media are determined by the percolation properties of the void space of rocks. It is known 
(see [9], for example) that a percolation cluster has fractal properties. Hence it follows 
that the void space of sedimentary rocks has fractal properties, which is observed experi- 
mentally [i0]. 

I. Multiphase Filtration~ We first consider the equations of multiphase filtration for 
the case when one phase (the wetting phase, for example) extrudes the other (nonwetting) 
phase. 

We assume that the void space is a fractal with the Hausdorff-Besikovitch dimensional- 
ity df embedded in a continuous medium with dimensionality d (d > df, d = 2, 3). 

To derive the eo~uations we adopt the method used in [ii] to derive the equations of 
filtration in a fractured medium with the cracks having a fractal geometry. 

We consider flow with cylindrical (d = 2) or spherical (d = 3) symmetry, when all func- 
tions depend only on the time t and the distance r from the center of symmetry. Then the 
integral conservation of mass equation is written in the form 

0 .f mp~Swd~p = I qfd~ , - -  i qfd~,, (I) 
Ot r~ rLro ' df  df  . . . .  

where dlap = drdla s . 

Below we will need the relation 
d/ d: 

d - - I  

where ~df = 2~df:iF-1(df/2) is the surface area of a unit (df - 1)-dimensional sphere. 

Using (2), we rewrite (i) in the form 

OSw 1 0 
mpw O----t--= re: -1 Or [re:-l ql" (3) 

Combining (3) wi th  the  equa t ion  of  t he  g e n e r a l i z e d  Darcy ' s  law 

k (~) 
u~ - : i  ( ~ )  Vm,  
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